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SUMMARY 

The numerical stability of a number of computation schemes currently used for three-dimensional, 
inviscid, compressible flow is analysed using one-dimensional Fourier analysis. Whereas Reference 1 
analysed schemes which were modified to render them amenable to simple analysis, the present work 
analyses the stability of schemes as actually used by H i g h t ~ n , ~  Ahrabian,' Denton* and Spalding.6 The 
use of current values of the variables as they become available is shown to bring a general improvement 
to stability margin. The manner of damping introduced by the time marching formulation is shown to 
be deleterious to modifications which reduce truncation error. Staggered grid schemes can be 
formulated to second order accuracy with better stability margin than the corresponding first order 
scheme. While unstaggered grid schemes can be formulated to second order error and remain stable, 
their stability margin becomes very small. Agreement of the theory with numerical experiments 
continues to be of a high order for both one and three-dimensional disturbances. 

KEY WORDS Three-dimensional Flow Computation Scheme Time Marching Conventional Damping Old 
Time Level Current Time Level Fourier Perturbation Staggered Grid 

INTRODUCTION 

The numerical stability of three-dimensional inviscid compressible flow calculations by 
application of one-dimensional Fourier analysis of the perturbed equations about the point 
of solution was examined in Reference 1. The analyses there contained were confined to the 
type of scheme used by Ahrabian,' Denton: Highton3 and Al-Nakeeb4 which are formu- 
lated on a time marching basis. These analyses were further confined to these schemes when 
only previous time level values are used on the right hand side (r.h.s.) of the equations 
because the simple quadratic equation which determines the eigenvalues governing stability, 
becomes a cubic when current values are introduced into the r.h.s. of the equations. It is then 
simpler to test the stability of the schemes experimentally with a computer program than 
attempt to solve the cubic equation. The value of Reference 1 lay in exposing the basic 
mechanism through which the different discretization schemes operate to stabilize or 
destabilize the calculation. In these simple cases it was possible to see how the experimen- 
tally well established upwind and downwind biasing of differencing schemes, as had been 
observed by March and Merryweather,' were able to produce stability, at least for isentropic 
flow. It further became clear how a staggered grid system as used by Highton3 was able to 
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combine improved accuracy in some of the terms without loss of stability. For all the 
schemes analysed it became apparent that stability decreased and finally vanished as the 
Mach number was reduced to zero. The numerical experiments which accompanied the 
analyses demonstrated not only the reliability of the one-dimensional stability analysis to 
predict stability margins for one-dimensional flows with plane disturbances but further 
demonstrated the coincidence of this stability margin with that obtained from three- 
dimensional disturbances in one-dimensional flows. It was this latter feature which encour- 
aged the present persuit of more extensive developments and investigations. 

It is usual practice to use current values of the variables on the r.h.s. of the equations as 
they became available. It is observed experimentally that for time marching schemes this 
feature modifies the low Mach number behaviour so that instead of stability vanishing as 
M -+ 0, the stability margin approaches its maximum value of unity and the margin is 
generally improved throughout the flow range. In the present paper it is shown that the 
solution of the cubic stability equation reflects this characteristic and that unlike the previous 
analyses’ the lower bound of the stability margin is not necessarily dictated by the low 
frequency perturbations. The theoretical lower bound of stability margin continues to predict 
reliably the experimental behaviour. The time marching formulation of the equations is here 
considered natural in the sense that their form arises from the natural, physical time 
dependent equations. In the discretized equations the damping occurs through the imposition 
of an arbitrarily selected time step so that the damping factor Q, which is in this case the 
Courant number, occurs in the equations an an inherent part of the formulation. It is shown 
that the occurrence of damping in this manner is deleterious to the stability of discretized 
forms aimed at achieving higher accuracy and that superior behaviour is achieved by 
introducing the damping alternatively through an additional equation in the conventional 
manner. 

Alternative forms of the discretized equations obtained by removing arbitrarily selected 
terms to the left hand side (l.h.s.), as by Spalding,6 are here regarded as unnatural because of 
the arbitrariness of this procedure. Such formulations involve the division of the r.h.s. by 
arbitrary factors involving fluid properties which have pronounced effects on stability. The 
Spalding formulation is studied in the present work and found to possess inferior low Mach 
number stability margin and limited subsonic range. 

Spalding’s scheme employs an auxiliary correction cycle as an innate part of the total 
composite cycle. Highton’s scheme contains a similar device as an option but such devices 
may be introduced into any scheme to form a composite cycle. The present work analyses a 
generalized auxiliary cycle and applies the results to Highton’s scheme where the effect on 
the composite cycle is also considered. A considerable improvement in stability results as 
would be anticipated since the axiliary equations are usually chosen with a very high stability 
margin. Spalding’s auxiliary implementation, based on a diffusive pressure correction concept 
is quite different from Highton’s and poses severe analytical difficulties. However his 
auxiliary equations, implemented in the manner of Highton, have been analysed and show a 
similar level of improvement to the stability margin of the composite cycle. 

It should be observed that the basic schemes of Ahrabianl and Denton’ coincide when 
applied to the one-dimensional flows here treated. 

GENERAL STABILITY CONSIDERATIONS 

Let the non-linear algebraic difference equations for compressible flow 

E = O  
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to be solved for the primitive variables X, be written in the form of the recurrence relation 

(2) X n + l -  -n  - E n , n + i  - x  

where E is indicated as containing the variables X at the new and old level values, ( n  + 1) and 
( n )  respectively. The recurrence relation (2) may not be found to be stable on being 
repeatedly cycled. Stability may often be achieved by the introduction of a damping (or 
relaxation) factor Q which may be introduced in one of the following two ways 

or 

Although substitution of (4a) into (4b) causes the result to look identical to (3), this is not 
necessarily so as the following simple linear example demonstrates. 

Let the variables be X = and the equations = 0, be [::I 
C X ; " ' . ~  + dxg = 0 

then from ( 3 )  
x ;+ '=x;+Q(e (x ; -Q(axy+bx; ) )+dx; )  (6) 

x ; + ' = x y + Q ( C ( X y - ( a x ~ + h x ; ) ) + d x ; )  (7) 

is obtained, whereas from (4a) and (4b) 

is obtained. If on the other hand I? = En, containing only the old level values (n) ,  then (4a) 
with (4b) becomes the same recurrence relationship as (3). The distinction is important 
because both forms (3) and (4) occur in natural formulations of the compressible flow 
equations and their respective stability behaviours are quite different in a profound way, as 
will be seen subsequently. 

In considering the solution of the steady state compressible flow equations represented by 
(l), the form (3) naturally occurs if the time dependent flow equations are used, as discussed 
by Bosman and Ahrabian,' as a vehicle to arrive at the steady state in which case the 
damping factor Q becomes the Courant number defined by 

cAt 
Qs- 

A z  

and can be seen to have physical significance. Alternatively the steady state equations may 
be written as in (4a), in which case the damping factor Q in (4b) has no physical significance. 

We consider the linear stability of the relations ( 3 )  and (4) about the point of solution Xs 
which satisfies (1), then from ( 3 )  

- x,) = ( ~ n  - x7) - ~ ( j + n + l -  (9) 

(10) 

(I+ QGn+J1(I-- QGn)SXn (114  

so that by Taylor expansion about 2, 

SXn+' = 6%" - Q(GnSTn + Gn+1SXni1) 
which by re-arrangement gives 

8 X n + l =  



A

or starting with (4) we obtain instead 

where 

The difference in the perturbation equations ( l la )  and ( l lb)  is apparent when G,,, f 0 and 
follows the earlier discussion leading to (6) and (7). 

As discussed by Bosman and Ahrabianl the perturbation vectors 62 contain values at 
points around and including the nodal point p. By Fourier series we may express the values 
at any point j in terms of the value at the nodal point p and an arbitrary frequency 
parameter w such that 

sxi = (eiw(i-p) +e-iw(i-p))sx, t 14) 
0 

Since the two terms in the bracket are conjugate, their growth or decay behaviour is similar 
and we need examine the stability of only the one with the positive index sign, i.e. eiO(J-p). 
Since the algebraic equations (1) are formulated from differential equations all of whose 
terms contain derivatives then all terms in the algebraic equations (1) contain differences of 
values of x about the nodal point p. Hence in the neighbourhood of the uniform perturbation 
represented by o = 0 a difference between two points j and m in one space dimension takes 
the form 

(eiw(i-p)- iw(m-p) ) I  8% 
e 

(sxi-6&) - 
(3 - m) w-0 0-0 

w 2  
iw(j- m ) - y  ( j +  rn -2p)(j - m) 

- iw- ( w 2  
.- ( j +  m - 

2 

-0 (15b) 

If these multiples of ax, in (15a) are absorbed into the govering matrices G of (11) or (13) 
then the elements of G become complex numbers multiplied by real fluid properties, e.g. 
Mach number (M) ,  density ( p ) ,  acoustic speed ( c ) ,  etc. and (11) or (13) now apply to the 
variables, i.e. fluid properties x at the single nodal point p. 

Now (11) becomes 

sT,"+c'= ( I +  QGn+J1(I- QGn)STZ (114 

SXZ+' = ( I +  Gn+J1(I- QG,)STF 

and (13) becomes 

(134 
As w -+ 0 every element of G contains a factor of the form 

from (15a) and (15b). 
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x locus 

stability limit 

Figure 1. Argand diagram of basic stability behaviour. QA < 2 cos 8, 
cos % = R/J(R2+ I=), h = J ( R 3 i  12), Q & 2R/(R2i12) 

It follows from (16) that 

hence the eigenvalues of G, A, defined by 

I A 1  - GI 0 

satisfy the condition 

and the locus of A on the Argand diagram, (Figure 1 )  passes through the origin. 
For negative values of o, it can be seen from (15a) that the multipliers of Sx, conjugate 

and so do the values of hG in (18) hence the locus of AG is tangent to the imaginary axis at 
the origin. Now for stability, the A, must lie on or within the unit circle shown in Figure 1 so 
that it is necessary that the radius of curvature R, of the AG locus at the origin satisfies the 
condition 

Now this radius of curvature is given by 

where h, and hI are the real and imaginary parts of A and at the origin A, 4 0, AI 4 0 
hence 

Notice that R, < 0 implies a centre of curvature on the opposite side of the imaginary axis. 
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Since the introduction of damping Q in the manner of (4) has the sole effect of scaling thus 
A := QA as shown by Bosman7 then, with damping in this manner (22) becomes 

Although no proof of generality can be given, the authors have found that all the schemes 
analysed possess the common characteristic that the entire locus of a given branch of the h 
locus lies to one side of the imaginary axis so that if all the branches lie on the same side of 
this axis, then all branches can be brought within the unit circle by the application of some 
suitable value of Q in the manner of (4). If the above characteristic can be assumed, then the 
stabilization of the numerical scheme by application of Q in the manner of (4) is assured for 
some values of Q satisfying 

(24) 
O<Q<r$)  0-0 

It was found by Bosman and Ahrabian' who analysed only schemes for which G,+, = 0, i.e. 

1E;:=1E;:" (25) 
where only old level values are used in the expression of the equations, that in fact the lower 
bound of Q occurred at w = 0. As will be seen subsequently, when G,,, # 0, as is usual in 
most schemes in practice, the lower bound of Q may not be given by the perturbation 
frequency w = 0. However it remains true that if all the branches of A lie to the same side of 
the imaginary axis at the origin, where w = 0, then the scheme can be stabilized by suitably 
low values of 0 used either in the time marching form (TM) of (3)  or the form of 
conventional damping (CD) in (4). Such schemes are here regarded as stable. On the other 
hand, schemes for which R, (equation (22)) -+ 00, have A lying on the imaginary axis at the 
origin and the A locus at that point is not one of simple tangency, and also schemes which 
possess branches lying on both sides of the imaginary axis, cannot be stabilized by the 
application of Q and are here regarded as inherently unstable. 

For the stable schemes, stability will only be realized for values of Q which confine all the 
resulting A on or within the unit circle of Figure 1. Since the effect of Q with CD is simply to 
scale A then in this case geometry requires that 

The stability margin referred to in subsequent sections and plotted as Q in the Figures refers 
to the values of Q satisfying the equality in (26) in CD cases or for TM and more generally, 
the values of Q which confines all resulting A on and within the unit circle. 

EFFECTS OF DIFmRENCING SCHEMES 

The effect of taking a difference of perturbed values of x at two grid points j and rn in one 
space dimension is given by (15a). The direction of flow is assumed to be from rn to j hence 
j > rn. Equation (1  5a) may be re-written 

(ax, - ax,) --+ w-0 iw - w 2 a  (27) 
where 
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gives the position of the centre point about which the difference is taken, relative to the 
nodal point p, i.e. with p taken as local origin. 

If j and rn are centred on p then a vanishes. If, on the other hand, the difference is 
centred upwind of p then 

whereas if it is centred downwind of p 

cW<O (294  

(Y>0 (29b) 
the upwind and downwind differencing are of first order truncation error, whereas the 
centred differencing is of second order error. 

It is possible to introduce improved accuracy of the differencing by extrapolating values by 
application of, say, a polynomial fit. As w -+ 0, the perturbation Fourier component 

-+ l+iw(s- j )  (30) elo(s-l) 

becomes linear so that all polynomials of the first or higher degree become exact fits and the 
extrapolated value at point s relative to point j is given by (30) in all cases. If this 
extrapolation is used similarly at the differencing points j and rn then (27) becomes 

where 
(1+iw(s-j))(iw-02a) -+ iw-w2p 

p = c \ l + ( S - j )  

The effect (31b) is simply to shift the apparent centre point a of the difference scheme by the 
extrapolation distance (s - j). Hence if upwind differencing is improved by forward extrapo- 
lation ( s - j )  so that the shifted centre given by (31b) now lies at the nodal point p then 
p = 0 and the term in w 2  in (31a) vanishes just as for two point central differencing, when a 
vanishes. All second order error differencing schemes, whether apparently biased upwind, 
downwind or not. cause the real part of the differencing operator to vanish as w --+ 0, i.e. 

R, = Rb = R,= R, = 0 (32) 
(see (40) and (50)). This fact has important repercussions with regard to stability as will be 
seen subsequently. 

USE OF CURRENT VALUES 

If only old level values are used in l? then the matrix Gn+l in the perturbed equations ( l l a )  
and (13a) vanishes and the effect of damping Q, in either formulation (3) or (4) is the same 
and has the effect of scaling A. If we now consider the behaviour in the neighbourhood of 
w = 0 then 

and 
Gn -+ C01, Gn+, --+ C01 (33) 

( I +  QGn+,)-” (I-QGn+t) (34) 
hence (1 la )  becomes 

SXE “ = ( I - Q ( G -  OGn+,G,))6X~ 

whereas (13a) becomes 

(35)  

where 
6X;+’ = ( I -  Q(G - G, +I  Gn))6X,” 

G = G,, + GnfI 
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Since in the neighbourhood of w = 0 all elements of G contain a factor of the type 

iw + yo2 (38) 
as a result of the differencing procedure then the product G,,+,G,, contains only real 
elements of order w 2  and is scaled by i2=-1, lower orders, i.e. higher degrees, in w 
vanishing as w -+ 0. 

If we consider the case of hornentropic, isentropic uniform flow in one space dimension 
which reduces to only two variables, as was done by Bosman and Ahrabian' then 

and if the governing matrix G is written 

G Z Z [ ~  '1 
c d  

the use of current values as they become available implies from (37) and (10) that 

and in this case 
(I+Gn+J-'=[ :]=I-[ 0 0  ]=I-G,,+, 

- C  c o  
so that (13) becomes 

S?"" = (I-(Gn+l + G,, - G,,+,G,,))SZ'' 
= (I- (G - G,, + 1 G, ))W' (43) 

If damping as in (4b) is now applied (43) becomes 

Sin+' = ( I -  Q(G - G,,+lG,,))Si" (44) 
If on the other hand, the time marching scheme as in (3) is employed then it will be seen 
from (11) that 

8Z"+1= (I- Q(G - QGn+lG,,))SZn (45) 
From (41), the term Gn+lGn is given by 

The eigenvalues A of the matrix (G - G,,+lGn) satisfy the equation 

A 2 -  (a  + d - g)A + ad - bc = 0 (47) 

g = bc (48) 

where it can be seen that the only effect of the use of current values is to introduce the term 

If one follows a similar argument with regard to the TM form of the equations then, as will 
be seen by comparison of (12) with (13), (14) and (15), the difference is to scale the factor g 
by the factor Q. From (15) we obtain the general result 

A =${a + d - Q'g * [ ( a  + d ) 2 - 4 ~ d  +4Q'g -2Q'g(a + d) + Q'g2]"2} (494 
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where 

0, for old level (OL) values only when G,,, = 0 
Q’ = 1, for current values with conventional damping (CD) ] (49b) 

Recalling the earlier remarks of this section with regard to (38) ,  let the terms of the 

[ Q, for current values with time marching (TM) 

governing matrix be written 

f = R p 2  + Ipi (50) 
where f = a, b, c or d in (40) and contains fluid factors such as M, c/p, p/c as well as 
numerical coefficients. then in the neighbourhood of the origin as o 4 0 

hR = 02(hR, ,  + Q ’ ~ R , + J  (5  1) 

where 

and 

where 

where it can be seen from (49b) that for old level values and current values with CD, R, is 
simply scaled by Q but not for current values with TM. The general beneficial effect of using 
current values can be seen from (56) and (53) where it should be observed’ that for stability 
in subsonic flow b and c should be conjugate negative so that &Ic > 0 and A,+, is usually 
positive. 

In schemes which attempt to obtain higher accuracy the condition (32) applies with the 
result hRm = 0 (see (52)) and R,  -+ 00 for OL schemes, with consequent failure. It should be 
observed from (53 )  that which arises as a result of using current values, is a function of 
only the imaginary parts of the matrix elements and does not vanish for higher accuracy 
schemes. However for the TM form Q’ = Q, and R, at (56) is then seen to be independent of 
the damping factor Q and since usually R,>1, such schemes fail. In contrast, with CD, 
Q’ = 1 ,  and R, is scaled by Q and can therefore be stabilized. 

The cross-winding (i.e. opposed difference schemes or staggered mesh) of terms b and c 
causes the term (RbIc + RcIb) in (52)  to vanish as then b and c are negative conjugate to each 
other. This improves stability by reducing the term with the dual sign in (52). This term 
vanishes if in addition a and d are made equal, as is possible in differential formulations of 
the equations,’ when stability is assured. 
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USE OF AUXILIARY CYCLE 

If we define the increment in the vector X by 

X" (57) 

(58 )  

s'X..X"+I- 

then (4a) may be written 
6 ' X n  = -En,n+l  

which by (1) and a Taylor expansion about Xs as at (9) and (10) may be written 
= - ( E n , n + l -  E )  
= - (GnSE" + Gn+lSXni1) (59) 

(60) 

where SX", SXnil are defined as at (12) so that by (1) above 
6'1" = 6jp+l- 62" 

Equations (59) and (60) are a re-expression of the original perturbed problem in the 
neighbourhood of the solution Xs involving the incremental vector 6'2 and the vector 
perturbation from the solution 62. We may introduce an arbitrary set of auxiliary equations 
AS'X into (58) thus 

- 
(61) S'f =I - AS'Z - E n , n + l  

where A may be selected to have a stability margin superior to that of E. It will be observed 
that if S'X vanishes we have the original solution = 0. Subtracting this solution from (61) as 
at (9), applying a Taylor expansion about X, and considering that the auxiliary equations may 
contain terms at both current and old level values, then (61) may be written 

SrRn+l=-(A,S'ln +A, tlS'Xn+l)-(GnSXn + GnilSXn+') (62) 

Such a scheme may be used in place of the original one (namely (58)) and stability 
behaviour may be improved by suitable choice of A. 

Alternatively it is possible by solving a subset 
E'=0 

of the original equations E, to introduce an auxiliary cycle in the manner 
6rfn  = E n , n + l  

being the main cycle, and 
s t , -n+r  = - (~,6tin+r + ~ , - ~ ~ ~ ~ n + r - l )  -Etn,n+1 

being the auxiliary cycle, in which, for the first pass ( r  = 1) only 
srzn+r- l  = I-n - s x  - 0  

on the r.h.s. so that 

is the current residue of the subset E' of the principal equations. 

- 
s t i n t 1  = -Ern." Cl 

The perturbation of these equations, following the earlier procedure, leads to 

6'2" = - (Gn6X" + Gn+lSXn+l) 
s t z n + r  = -(A i j r X n + r - l + ~ , 6 ' x n + r )  __ (G;axn+r + G' a x n + r + l )  

r- 1 n t l  
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whereas by (60) 

6fn+r (654 a r f n t r  - - a f n + r + l -  

The stability of the auxiliary cycle, alone, expressed by (65b) and (6%) may be re-written 

Even for simple isentropic, one-dimensional flow where 

6X = [;I 
this becomes a 4 x 4 matrix eigenvalue problem and is not amenable to simplified theoretical 
treatment as the 2 X 2 main cycle alone is. 

The above development follows the typical general application of auxiliary cycles as 
actually implemented. Details of implementation may differ considerably in the choice of 
forms for A and I?. In the Hightons auxiliary cycle for instance the auxiliary equations A 
consist of the equation of motion with the momentum flux term omitted and the continuity 
equation, while the subset of principal equations E' is null. The Spalding6 implementation is 
quite different in that there, A consists of the momentum equation with the momentum flux 
term omitted with a diffusion expression for density correction in continuity and the subset 
E' consists of the continuity equation alone. 

Some feel for the behaviour of these modified schemes using an auxiliary equation can be 
obtained by examining the Highton type of auxiliary scheme. In this case the auxiliary cycle 
(64b) is simplified by the removal of the dependence of 6 ' f  on the current residue of the 
subset of equations Ern."+*, because they are null so that the auxiliary cycle can be expressed 

(684  

B =(I+Ar)-'ArWl (68b) 

6 l z n + r  = - ~ ~ I ~ n t r - l  
by 

where 

so that 
s l fn+ l=  - ~ 6 ' f n  
6 l ~ n i - 2  = - ~ ~ r z n + l  

. . . . . . . . . . . . . . . . . . . . . .  
arXn+r = - B6 I f n  i r -  I 

and by substitution and addition, the latest vector solution 

is given by 
- 

(71) - j " f - - X n + l -  -((-B)+(-B)'+. . .+(-B)r)6'Xn 

which defines % and from which 

S = [ I -  (- B)]-'[- B][I  - (- B)"]6'X1 (72) 
The perturbation from the solution is now 

6% = j y + r + l -  - 
XS 

= (X -3") + (f" - fJ = 2 + SX" (73) 
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which by (72) 

= (I-GB)SX" (74) 

GB =[I-(-B)]- '[B][I-(-B)] (75) 

where GB determines the stability of the auxiliary cycle alone and is defined from (72) as 

Now, as o -+ 0, all non-zero elements of the auxiliary matrix A contain difference terms 
and tend to vanish so that 

[ I+ B]-I -+ I -  B + B2 (76) 
to the lowest degree in i o  and 02, where as discussed in the previous section B2 will be real 
negative and of order 02. Hence for r = 1, o -+ 0 

GB -+ B (77) 

and for r >  1, o 4 0  
GB -+ B-B2 

For the composite cycle which includes the principal equations I? plus r cycles of the 
auxiliary equations A, we consider an initial perturbation about the solution xs, 

(79) 620 f0 - 2, 

which by (59) and (60) gives 

Now introducing the auxiliary equations from (68) 

etc. and for r cycles 

by (73), where GB is defined by (75). By (80) and (83) 

SX = ( I -  GB)(I+ G,,+j)-'(I- Gn)SfO 

= [l -(GB + G - GBG - Gn+,Gn)]SXO 

(84) 

(85) 

so that as w 0 and (I+ Gn+J1 -+ I -  Gn+' 

The quadrature terms (-G,G) and (-Gn+lG,,) are both positive real as w -+ 0, as 
previously discussed and are likely to improve stability, the second of these is simply a result 
of using current values in the principal equations whereas the first is a contribution from the 
application of the auxiliary cycle. If the stability of the auxiliary cycle alone, expressed by GB 
is high compared to that of the principal equations alone expressed by G, then the composite 
cycle may be anticipated to have an improved stability margin over the main cycle. 

COMPARISON OF THEORETICAL AND 
EXPERIMENTAL RESULTS 

All the results presented are for isentropic, hornentropic, uniform compressible flow in one 
space dimension as in Reference 1 where the equations have been formulated on an integral 
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-+ 

cont ro I 

over which 
integration 
is taken 

surface P-1 P-: P P + i  

control surface to which 
omentum IS applied 

Figure 2. Illustrating the different grid systems; (a) mesh used by 
DentoniAhrabian scheme; (b) Mesh used by Highton/Spalding scheme. 
X p determined at these points, o V determined at these points 

control surface to which 
continuity IS applied 

basis as applied to fixed control surfaces and have the form 

1 (a. grad + 

-C1div v+a. grad p 

div) v + c( 1 + M(@ .)) grad p 
P 

C J 
in which the operators div and grad have been discretized by schemes due to Highton3.* and 
Ahrabian.’ The numerial experiments have been conducted using computer programs 
written for three-dimensional flow through ducts of a shape which can be arbitrarily specified 
by the user. One dimensional experiments have been simulated by using uniform, unidirec- 
tional flow, perturbed by plane disturbances normal to the flow. The grid employed in all 
cases was 3 x 3 x 100 points with the plane perturbation half way along the flow at station S O ,  
in order to avoid the influence of the stabilizing end boundaries on the results as observed in 
Reference 1. 

The elements a, b, c, d of the governing stability matrix (40) correspond, respectively, to 

the perturbation of the terms (a. grad+ (grad p + M a .  grad p) ,  _p div v and 

fi . grad p in (86) after suitable discretization. Figure 3 illustrates the stability margin Q 
against Mach number M from Ahrabian’s results where the discretized equations, reduced to 
one dimension for analytical simplicity, read 

div)v, 
P c 
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Figure 3. Stability margin Q against Mach number M with perturbation 
frequency o for AhrablaniDenton scheme with time marching using 
current pressure values 

in which momenturn and mass convection terms are upwinded while the force term 
c2(pp - 4, is downwinded. This Figure shows the TM case in which the density p is used at 
its current value in the force term, which is normal practice, whereas in the momentum flux 
term ((pV2)>, -(pV2),_,) the density is at the old level. It appears that as with schemes using 
only old level values' the lower bound of Q occurs at or close to w = 0. The stability margin 
compared with that obtained with old level values is greatly improved as discussed and 
anticipated in the section 'Use of Current Values'. Figure 4 depicts the TM case when 
current values of p are used in both the momentum flux and force terms. It will be observed 
that the lower bound of Q does not correspond to a particular perturbation frequency 
throughout the Mach number range and nowhere is it close to o = 0. Figure 5 compares the 
stability margins for the last mentioned case at the frequency w = rr, when old level values 
are used (i.e. Q' = 0 in (48), when CD is used (Q' = l), when Q' = 0.5 and when TM is used 

a 
0 .5  

theory { 
exptl  I - D  3 x  3 x 1 0 0  

- W = 7 7  

M 
Figure 4. Stability margin Q against Mach number M with 
perturbation frequency o for Ahrabian/Denton scheme with 
time marching using current values of both pressure and 
density 
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M 

Figure 5. Stability margin Q against Mach number A 4  
with perturbation frequency w for AhrabianiDenton 
scheme for various values of Q': Q'= 0, old level values 
(OL); Q' = Q, time marching (TM); Q' = 1, conventional 
damping (CD) 

(i.e. Q' = Q). The single experimental point found for economy at M = 0-6 in the case of CD 
indicates that the stability margin is being determined at this Mach number by the frequency 
w = n. Compared with TM, the CD scheme shows a considerable loss of stability in this case 
which was tested because at w = 0, the introduction of CD indicates a significant improve- 
ment in stability margin. Figures 3 ,4  and 5 offer ample confirmation of the validity of the 
theory. 

Figure 6 shows results of using the Highton3 staggered grid scheme of Figure 2 where all 
terms in the equations are centrally differenced and used with CD. In this case the reduced, 

1.0 

0.5 

case legend gr id  
theory - 

exp+,, 1 - D  0 3 x 3 ~ 1 0 0  
3 - D  x 5 ~ 5 x 1 0  

X 
x 

0 .5  1 .o 0 " ' i ' " i ' '  
M 

Figure 6. Stability margin Q against Mach number M with 
perturbation frequency o for Highton scheme used with 
centred differencing, current values and conventional damp- 
ing (Q = l), Q.. = value of Q using negative sign 
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discretized equations read 

which are of second order accuracy. The force term C ’ ( P ~ - ~  - pp) is taken at its current value. 
It should be observed that in this scheme subscript p referring to the nodal point is different 
for the two variables p and V. The Figure shows that this second order scheme has a higher 
stability margin than the same scheme where the convection of V and p are taken upwind, 
thereby incurring first order error as in References 1 and 3.  This scheme has zero 
quasi-viscosity and serves to reinforce the point,’ that numerical stability and quasi-viscosity 
have no direct relationship, but in schemes with first order error, both vanish simultaneously. 
The stability margin of the experimental results appears to be slightly better than the theory 
suggests because the number of iterations demanded by the experiments was such that the 
end boundaries were exercising some stabilizing influence. This point was discussed and 
illustrated in Reference 1. 

COMPARISON OF SCHEMES USING CURRENT VALUES 

Reference 1 analysed only OL schemes for which stability vanishes as M + 0. This occurs 
because in the natural formulation of the equations of motion and continuity (see (86)) the a 
and d terms of (40) contain M as a factor whereas for stability in subsonic flow the b and c 
terms are required to be negative conjugate so that hRn in (52) vanishes at M = 0. Since for 
OL schemes Q’ = 0, then (56) renders R, + m and these schemes are unstable at this point. 

With the use of current values Q’ # 0 so that at M =  0, by (53), (54) and ( 5 3 ,  (56) becomes 

so that for both TM, where Q’ = Q, R, = 1 and for CD, where Q’ = 1, R, = Q the schemes 
become stable without modification to the discretization scheme. It can be shown from (49a) 
that because a = 0 = d and bc = - 2(1- cos o) when M = 0 for all the schemes based on a 
natural formulation of the equations as in (86), Q = 1 at M = 0 for all o so that the use of 
current values transforms loss of stability of OL schemes into the point of maximum stability 
with a margin of 1. This improved margin is found to continue throughout the subsonic and 
into the supersonic flow regime. 

For TM schemes Figure 7 depicts the stability margin at o = 0 for the Ahrabian scheme, 
the Highton scheme using upwind convection of V and p3 and the scheme which uses a 
common upwind operator on all difference terms, which for OL values leads to the Courant- 
Friedrich-Lewy (CFL) condition’ and is stable for only supersonic flow. Any of these 
schemes may be formulated differentially, thus 

1 1\;1.grad v+-4:gradp 
E =  P 

1 Lfdiv v+a. grad p 
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Figure 7. Comparison of stability margin Q against Mach number M at zero perturbation 
frequency (w = 0)  for various time marching schemes using current values: CO = common 
operator; AID = Ahrabian/Denton: H = Highton; CV = current values 

or integrally as in (86) and results for both formulations are given in the Figure. The 
conclusion drawn from these results is that the use of current values shows a universal and 
greatly improved stability margin to low frequency disturbances at all Mach numbers. 

The common upwind operator scheme which is differentially formulated remains stable 
only for supersonic flow but at M = S the stability margin is doubled and the CFL condition 

1 Q=- 
M + l  

becomes 

For the differentially formulated Highton or Ahrabian schemes the stability using the OL 
scheme,' namely 

M Q=- 
(M+1)2 

becomes, with the use of current values, 
1 

Q=- 
M+S 

i.e. the CFL condition. 
As was observed with the OL schemes,' differential formulations show a greater stability 

margin than the corresponding integral formulation. 
The integral formulations in Figure 7 all show an improved stability margin at low 

frequencies when current values are used in place of OL and, although w = 0 may not in 
these cases represent the lower bound of Q as may be seen in Figure 4, it has been found in 
practice that it gives a reasonable guide in the TM schemes and, in these schemes 
improvements indicated only at w = 0 have in practice been confirmed by experimental 
results as general improvements over the full frequency range. 
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However, for CD schemes it appears that stability with current values is not limited by the 
low frequency spectrum, which can provide a very misleading impression as shown in Figure 
5 where for the Ahrabian scheme the lower bound at M = 0.6 is close to w = 17; stability for 
w = 0 being high. 

Spalding; employing an integral formulation, uses a staggered grid system which differs 
from that of Highton in three dimensions but which becomes coincident with it for one 
dimensional flow. Spalding uses the continuity equation to update the pressure field which, 
for the isentropic, homentropic flow under consideration, is directly related to the density 
change thus 

dp = c'dp (93) 

However, instead of using the continuity equation as in the natural formulation given in (86) 
to obtain a density update (via (93)) directly as in (2), he updates the density through a 
discretized diffusion expression for density change which can be shown to be equivalent here 
to the formulation 

A X  M 
- div grad p6'p = - div (pv )  
P C 

(94) 

His momentum equation, which has the same form as that given in (86), may be written 

div (pv)V = - c2 grad p (95) 

which is merely a re-arrangement of that in (89). He  retains only the nodal terms on the 1.h.s. 
of ( 5 )  and (6)  and by writing 

pv2 = pnvnvn-+l (96) 

obtains equations for pn+' and Vntl after suitable division by their factors which are 2A for 
density pni' and ApnV" for velocity Vn+l, the numerical coefficient 2 appearing as a result 
of the discretization of the diffusive expression div grad. 

For this scheme l? is equivalent to the form 

-L ((M . grad+11? d i v ) v t 2  (1 +MI@.) grad p 
M P B =  

M 
div grad (p6'p)+- div ( p v )  

c 

(97) 

Spalding uses the continuity equation in an auxiliary cycle, discussed subsequently, in which 
the density update Sp obtained from is a function of the previous update as can be seen 
above in (97). This section is concerned only with the stability of the basic cycle consisting of 
a single pass through the equations of motion and continuity alone and in the absence of an 
auxiliary cycle which can be introduced into any of the schemes discussed and which is used 
in the implicit mode of the Highton scheme.3 Accordingly the diffusive 'pressure' correction 

term - div grad (pS'p) is omitted in present stability considerations since, as continuity is 

passed through only once in the cycle, it has no previous correction and is entered with 

Ax 
P 

S'p = 0. 



NUMERICAL STABILITY IN COMPRESSIBLE FLOW CALCULATIONS 141 

( instable q.0) 

Following Spalding's discretization, and re-arranging the equations to read as in (2), they 
may be written for the present case as 

where the mass flux in the momentum equation is centred but the velocity convection is 
upwinded whereas the density convection in continuity is downwinded and the volume flux is 
centred (as a result of the staggered grid system'). It must be observed that in this grid system 
the nodal points for velocity and density do not coincide. Spalding's momentum equation 
here differs from Highton's in that it is effectively scaled by 1/M (cf. equation (88) where 
M =  V,/C) and his continuity equation differs in two important respects. Because of the 
formulation based on diffusive correction his continuity equation is effectively scaled by the 
factor 4, it is further scaled by the factor M and his density convection is downwinded, 
whereas Highton's is upwinded. The latter feature alone would render Highton's* scheme 
unstable. 

It will be seen from Figure 8 that the low frequency stability of (98) which has a lower 
bound at M = 0 ,  is low at low Mach numbers compared with the naturally formulated 
schemes for which the lower bound of Q = 1 at M = 0, but maintains a very flat response to 
Mach number. Whereas the naturally formulated schemes remain stable for supersonic and 
usually for hypersonic flow, the Spalding formulation becomes unstable for M 3 0-63. The 
lack of low frequency stability of this scheme can be seen in Figure 8 to result mainly from 
the diff usive pressure correction coefficient of 4 which scales the continuity equation, with 
some further contribution from the downwinded density convection. When an upwinded 
density convection term and non-diffusive pressure correction are applied the stability 
margin is improved by some 20 per cent. The limited stability range is marginally improved 
by the non-diffusive formulation and is completely removed when upwinded density convec- 
tion is adopted. When both modifications are adopted the low frequency stability margin at 

I 

0 5 -  w=o 

S ( U 0 C )  t Y 
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M =  1 coincides with that of Highton as then the difference is only one of scaling factors 1/M 
and M which are then unity. It is clear that the great loss of stability at low Mach numbers 
results from these last two factors which arise because of the manner in which the equations 
are formulated from the steady state equations by the removal of terms to the 1.h.s. and 
subsequent division by factors containing fluid properties. 

APPLICATION OF AUXILIARY CYCLE 

The effects of introducing an auxiliary cycle in the manner discussed in the latter part of the 
section ‘Use of Auxiliary Cycle’ is illustrated here by application to the discretized equations 
as used by Highton3 and Splading.6 The purpose of this illustration is to demonstrate the 
superior stability, inherent in the type of auxiliary equation which is employed and to show 
how some composite cycles are improved by its introduction. The auxiliary cycle considered 
here is of the Highton form and does not take precisely the form employed in the method of 
Spalding. 

The auxiliary equations are constructed by omitting the momentum term from the 
equation of motion but otherwise retaining the remaining forms of the equations of motion 
and continuity as used by Highton and Spalding respectively. From (98) these equations read 

for the Spalding case which includes the Laplace pressure correction term, and 

1 
ASL=- 

C 1 - (pp6V, + VpSpp -Pp-16Vp-1 - Vp-1~Pp-l) 
C 

for the Highton case. It will be seen from Figure 9 that the stability margin of the Spalding 
form of auxiliary equation is very high, especially when repeated 6.e. r > 1) and considerably 
improves the margin, as well as extending the Mach number range of the composite cycle 
into the supersonic regime. The Highton auxiliary cycle is seen in Figure 10 to have a lower 
stability margin than the Spalding form auxiliary cycle but the composite cycle is shown to 
gain similarly in stability margin. The range of stability in the Highton case is not limited by 
either the main cycle or the auxiliary cycle and the greater margin achieved by the composite 
cycle results from the greater margin of the main cycle. Although the general improvement 
obtained by the use of the auxiliary cycle is clear, the effect is seen to be heavily weighted by 
the main cycle margin. The enormous enhancement of stability margin enjoyed by the 
repeated auxiliary cycle alone is occasioned by the appearance of the quadrature term B2 in 
(78). 
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Figure 9. Stability margin Q against Mach number M at zero 
perturbation frequency o for Spalding scheme; AC = auxiliary 
cycle alone; r = number of iterates of AC; CC = composite cycle; 
MC = main cycle alone. Q- =value of Q using negative sign 

0 
0.5 1.0 1.5 

M 
Figure 10. Stability margin Q against Mach number M at zero 
perturbation frequency o for Highton scheme: AC = auxiliary cycle 
alone; r = number of iterates of AC; CC = composite cycle; MC = 
main cycle. Conventional dam.ping 
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SCHEMES WITH IMPROVED ACCURACY 

The fundamental disadvantage of the schemes so far discussed which rely upon some degree 
of upwinding to some or all the terms of the equations, lies in the concomitant lack of 
accuracy incurred for such schemes. The stabilizing upwind device introduces first order 
truncation error into the discretized equations from which is inferred an increased error in 
the general solution. 

Attempts to reduce this error may be sought by direct reduction of truncation error in the 
discretization of the terms in the equations or by alternative device which attempt to correct 
the error as an adjunct to the existing equations by deferred corrections. This section is 
concerned only with the direct approach first mentioned above. 

It is shown in the third section that all formulations of difference expressions which 
eliminate the first order truncation error, simultaneously reduce the real part a of the 
Fourier perturbation difference operator (27) to zero, as w -+ 0. This results in the condition 
(32) which reduces hR, in (52) to zero with the consequence that for OL schemes (for which 
Q’ = 0) R, in (56) is infinite and the scheme is therefore unstable. For TM schemes (for which 
Q‘= Q )  

(101) > I  R,=- 
2hRn+l 

if current values are used (see (56)), which is unstable and unaffected by the imposed value 
of Q in (3). However, for CD schemes using current values (for which Q’ = 1) 

which are stabilized by an imposed value of 

(103) 2hR,+i Q<- 
A ?m 

provided all AR > 0 for w f- 0. 
Such schemes possess zero quasi-viscosity yet are stable. This stability exists by virtue of 

hR,+, being a function only of the imaginary part of the difference operators (27) which 
occurs due to the product (G, +,G,) in (36) as a result of using current values. Equations (53) 
and (55) in (103) yield for w --+ 0 

> 0 (for stability with Q > 0) (105) 

hence 

sqrt > (I, + I d )  

whereby from (54) 

Id, > I,& 

I,I,=(S+M2) 

For all the integrally formulated schemes, as w -+ 0 

I,& = 2M2 
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Figure 11. Comparison of stability margin Q against Mach 
number M for Highton and Spalding schemes with improved 
accuracy: H = Highton; S = Spalding; CC = centred convection; 
CF = centred flux: 3PUC = 3 point upwind convection; LB =lower 
bound. Conventional damping 

whereas for the differential schemes 
&I, = 1 
la& = M" 

so that in either case (106) becomes 
1>M2 

thereby limiting the improved accuracy to subsonic flow 011 account of the low frequency 
stability response. 

The staggered grid system is the simplest case to improve in the sense that many terms are 
already automatically centred as a result of the grid system and as these schemes usually use 
interpolation centred flux terms it is only the convection component of the leading diagonal 
terms of G which contain first order error. The result of introducing two point centred 
convection terms into the Highton and Spalding schemes can be seen in Figure 11. These 
schemes now contain only second order error and the figure shows the lower bound of Q for 
the main cycle only. Both schemes are stable, the Spalding scheme having suffered a loss of 
stability margin (cf Figure 8) but a gain in range to M = 1. The Highton scheme, surprisingly, 
but confirmed by experimental results in Figure 6, experiences a considerable gain in stability 
margin relative to the original TM upwind convection scheme (see Figure 7 )  which is of first 
order error. 

The Highton scheme has been alternatively improved by using three point upwind biased 
convection terms in place of the two point centred terms. Figure 11 shows a considerable loss 
of stability as a result of this upwind bias. This result too must be contrasted with the first 
order error schemes where upwind bias increases stability margin. The centred convection 
schemes have a lower bound of Q determined by w -+ 0 at M = 0 moving to w = 7r/2 over 
most of the range, whereas the upwind biased scheme has a lower bound corresponding to 
o = 7r throughout the range. 

The centring of the difference operators renders both real and imaginary parts zero at 
w = 7r so that schemes using a single grid system have a null stability matrix, G, at this 
frequency and are unstable. The staggered grid system retains its stability because the b and 



146 C. BOSMAN, D. AHRABIAN AND M. KAHROM 

~ ~ ~ " ~ + ~  ble Q... 0 )  

0 5  1 0  

U = T  A / D ( L B )  

W = K  H(LB 
0 

M 
Figure 12. Comparison of stability margin Q against Mach 
number M for Highton and Ahrabian/Denton schemes mod- 
ified for improved accuracy: H = Highton with 3PUD on terms 
a, b, d and 3PDD on term c ;  A/D = AhrabianiDenton 3PUD 
on terms a, c, d and 3PDD on term b ;  3PUD = 3 point upwind 
differencing; 3PDD = 3 point downwind differencing. Conven- 
tional damping 

c terms of G whilst deriving from centred expressions by virtue of the staggered grid, 
nevertheless give rise to perturbed difference operators which appear respectively to be 
upwinded and downwinded. Therefore, whereas the Ahrabian' and Denton' schemes are not 
able to take advantage of centred differencing, they do remain stable for three point 
differencing if the original upwind and downwind bias is retained. Figure 12 shows the 
stability margin for this case, in which the force term in the equation of motion (i.e. b in G) 
is downwinded, the remaining terms being upwinded. The lower bound of stability margin 
governed by w = rr is very low. The figure also shows the lower bound for the Highton 
scheme in which a similar differencing scheme has been adopted, which renders some terms 
of third order error. Here again the lower bound is for w = 7r and is very low. The stability 
margin for w = 0 is common for all naturally formulated schemes in which the first order 
error has been eliminated and is shown in this Figure. 

Within the limitations imposed by the methods so far considered no scheme has been 
discovered that will extend the higher accuracy stability range to supersonic flow. To acheive 
this it appears to be necessary to take the diagonal terms a and d of G, over to the 1.h.s. of 
the equations which would involve removing the momentum flux in the equation of motion 
and the density convection term P. grad p in the continuity equation to the 1.h.s. With these 
modifications the Highton scheme is stable for supersonic flow when used with three point 
biased differencing. 

CONCLUSIONS 

In TM formulations the use of current values of the variables as they become available leads 
to an improved stability margin, most markedly at low Mach numbers. In these formulations 
the stability appears to be limited by the low frequency perturbations. 

Natural formulations (see Introduction) using CD usually show a higher stability margin to 
low frequency perturbations but their overall stability is usually lower than the corresponding 
TM case and is determined by other perturbation frequencies. 

The introduction of differencing operators which reduce the truncation error in the 
discretization, simultaneously reduce the stability margin in all cases with the exception of 
that of Highton when used with CD. 
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Differential formulations of the equations always offer a larger stability margin than the 
corresponding integral formulation. 

All the schemes analysed retain some margin of stability when improved by reduction of 
truncation error to the second order. The staggered grid systems remain stable with a good 
margin when all differencing operators are centred and in the Highton scheme with CD the 
stability margin is actually improved. Unstaggered grid systems are unstable for centrally 
differenced operators but retain a low stability margin when three point biased differencing is 
used. All these schemes are stable only for subsonic flow. 

The auxiliary cycles in normal use have very high stability margins and when used with the 
main equations to form a composite cycle have the effect of improving the stability of the 
composite cycle. 

One-dimensional experiments carried out using three-dimensional computer programs 
confirm the validity of the one-dimensional Fourier stability analysis. In general it is found 
experimentally that the stability limit in three dimensions coincides with that in one 
dimension. The simple analysis is thereby able to indicate which developments will be 
successful in improving methods of computing three-dimensional, compressible flow. The 
results of all experiments so far undertaken have validated the theory in relation to 
predicting whether a scheme will or will not be stable and to predicting the margin of 
stability. 

The mechanism through which individual details of a scheme operate to affect stability can 
be clearly stated but the relationships involved are generally too complicated to allow 
directions of development to be drawn from it. However, some broad characteristics relating 
to stability are evident. 

NOMENCLATURE 

Latin characters 

C 

e 
f 
g, h 
i 
sqrt 
t 
X 
Z 

- 

A 
B 
E 
E’ 
G 
I 
M 
Q 
Q’ 
Rc 

- 

coefficients in equations ( 5 ) ,  elements of the governing matrix G (equation 
(40)) 
speed of sound (equation (8)) 
base of natural logarithms (equation (30)) 
generalized element a, b, c, d (equation (50)) 
elements of the matrix G,,+,G,, (equations (46) and (48)) 

as defined in (54) 
time 
vector of primitive variables 
space co-ordinate (equation (8)) 
matrix of auxiliary equations, flow area (p. 140) 
modified auxiliary matrix as defined in equation (68) 
the discretized equations of motion 
a subset of E (used in auxiliary cycle) 
governing stability matrix, GA corresponding to A, GB corresponding to B 
unit matrix 
Mach number 
damping factor, stability margin 
coefficient in equation (49) 
radius of curvature of h locus at o = 0 (equation (20)) 

J=T 
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Ra, Rb, R,, Rd 
V fluid velocity 

real part of differencing operators a, b, c, d (equation (32)) 

Symbols and greek letters 

P 
6% 
62' 
6 
A 

; z 
El 
[ I  
[01 .- - 
h 

P 
grad 
div 

0 

- 

coefficient of o2 (equations (28) and (31)) 
as defined in (12) 
as defined in (57) 
infinitesimal increment 
finite increment 
coefficient in differencing operator (38) 
summation (equation (14)) 
vector sum (equation (71)) 
vector of variables 
matrix 
null matrix 
becomes 
eigenvalue (e.g. hG eigenvalue of G) 
Fourier frequency parameter 
fluid density 
gradient operator 
divergence operator 
vector 

Subscripts 

1,2 
j ,  m, s 
n 
P nodal point 
r 
I 
R real part (equation (22) 

distinct variable as xl, x2 
grid points other than nodal (equations (28) and (30)) 
as G, = matrix corresponding to variables 2, (equation (10)) 

as A ,  = auxiliary matrix corresponding to variables S'Xntr (equation (65)) 
imaginary part (coefficient of i) (equation (22) 

Superscripts 

n 
r 
S solution value (equation (9)) 

iteration number indicating level of variable in main cycle 
iteration number indicating level of variable in auxiliary cycle 

Abbreviations 

CD 
1.h.s. 
OL 
r.h.s. 
TM 

conventional damping as in (equation (4)) 
left hand side of equations 
old level values only in the equations l? 
right hand side of equations 
time marching as in equation (3) 
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